4,653 research outputs found

    A lithium depletion boundary age of 22 Myr for NGC 1960

    Get PDF
    We present a deep Cousins RI photometric survey of the open cluster NGC 1960, complete to R_C \simeq 22, I_C \simeq 21, that is used to select a sample of very low-mass cluster candidates. Gemini spectroscopy of a subset of these is used to confirm membership and locate the age-dependent "lithium depletion boundary" (LDB) --the luminosity at which lithium remains unburned in its low-mass stars. The LDB implies a cluster age of 22 +/-4 Myr and is quite insensitive to choice of evolutionary model. NGC 1960 is the youngest cluster for which a LDB age has been estimated and possesses a well populated upper main sequence and a rich low-mass pre-main sequence. The LDB age determined here agrees well with precise age estimates made for the same cluster based on isochrone fits to its high- and low-mass populations. The concordance between these three age estimation techniques, that rely on different facets of stellar astrophysics at very different masses, is an important step towards calibrating the absolute ages of young open clusters and lends confidence to ages determined using any one of them.Based on observations made with the INT operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência, Tecnologia e Inovação (Brazil) and Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina). CPB acknowledges receipt of a Science and Technology Facilities Council postgraduate studentship. SPL is supported by a RCUK fellowship

    No evidence for intense, cold accretion on to YSOs from measurements of Li in T-Tauri stars

    Get PDF
    We have used medium-resolution spectra to search for evidence that proto-stellar objects accrete at high rates during their early 'assembly phase'. Models predict that depleted lithium and reduced luminosity in T-Tauri stars are key signatures of 'cold' high-rate accretion occurring early in a star's evolution. We found no evidence in 168 stars in NGC 2264 and the Orion nebula cluster for strong lithium depletion through analysis of veiling-corrected 6708Å lithium spectral line strengths. This suggests that 'cold' accretion at high rates (M = 5 × 10-4 M⊙ yr-1) occurs in the assembly phase of fewer than 0.5 per cent of 0.3 = M⊙ = 1.9M⊙ stars. We also find that the dispersion in the strength of the 6708Å lithium line might imply an age spread that is similar in magnitude to the apparent age spread implied by the luminosity dispersion seen in colour-magnitude diagrams. Evidence for weak lithium depletion (<10 per cent in equivalent width) that is correlated with luminosity is also apparent, but we are unable to determine whether age spreads or accretion at rates less than 5 × 10-4 M⊙ yr-1 are responsible. ©2013 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society.DJS is funded by a UK Science and Technology Facilities Council (STFC) studentship. The authors wish to thank Isabelle Baraffe for providing cold accretion models and useful discussions. Spectra were extracted and calibrated using the AF2 pipeline developed by Richard Jackson. This research is based on observations made with the William Herschel Telescope operated on the island of La Palma by the Isaac Newton Group (ING) in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias. This research has made use of archival data products from the Two-Micron All-Sky Survey (2MASS), which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center, funded by the National Aeronautics and Space Administration (NASA) and the National Science Foundation

    Relativistic expansion of a magnetized fluid

    Full text link
    We study semi-analytical time-dependent solutions of the relativistic magnetohydrodynamic (MHD) equations for the fields and the fluid emerging from a spherical source. We assume uniform expansion of the field and the fluid and a polytropic relation between the density and the pressure of the fluid. The expansion velocity is small near the base but approaches the speed of light at the light sphere where the flux terminates. We find self-consistent solutions for the density and the magnetic flux. The details of the solution depend on the ratio of the toroidal and the poloidal magnetic field, the ratio of the energy carried by the fluid and the electromagnetic field and the maximum velocity it reaches.Comment: 17 pages, 6 figures, accepted by Geophysical and Astrophysical Fluid Dynamic

    Pre-main-sequence isochrones - II. Revising star and planet formation time-scales

    Get PDF
    archiveprefix: arXiv primaryclass: astro-ph.SR keywords: techniques: photometric, stars: evolution, stars: formation, stars: fundamental parameters, Hertzsprung-Russell and colour-magnitude diagrams, stars: pre-main-sequence adsurl: http://adsabs.harvard.edu/abs/2013MNRAS.434..806B adsnote: Provided by the SAO/NASA Astrophysics Data SystemWe have derived ages for 13 young (<30 Myr) star-forming regions and find that they are up to a factor of 2 older than the ages typically adopted in the literature. This result has wide-ranging implications, including that circumstellar discs survive longer (≃ 10–12 Myr) and that the average Class I lifetime is greater (≃1 Myr) than currently believed. For each star-forming region, we derived two ages from colour–magnitude diagrams. First, we fitted models of the evolution between the zero-age main sequence and terminal-age main sequence to derive a homogeneous set of main-sequence ages, distances and reddenings with statistically meaningful uncertainties. Our second age for each star-forming region was derived by fitting pre-main-sequence stars to new semi-empirical model isochrones. For the first time (for a set of clusters younger than 50 Myr), we find broad agreement between these two ages, and since these are derived from two distinct mass regimes that rely on different aspects of stellar physics, it gives us confidence in the new age scale. This agreement is largely due to our adoption of empirical colour–Teff relations and bolometric corrections for pre-main-sequence stars cooler than 4000 K. The revised ages for the star-forming regions in our sample are: ∼2 Myr for NGC 6611 (Eagle Nebula; M 16), IC 5146 (Cocoon Nebula), NGC 6530 (Lagoon Nebula; M 8) and NGC 2244 (Rosette Nebula); ∼6 Myr for σ Ori, Cep OB3b and IC 348; ≃10 Myr for λ Ori (Collinder 69); ≃11 Myr for NGC 2169; ≃12 Myr for NGC 2362; ≃13 Myr for NGC 7160; ≃14 Myr for χ Per (NGC 884); and ≃20 Myr for NGC 1960 (M 36).CPMB is funded by a UK Science and Technology Facilities Council (STFC) studentship. SPL is supported by an RCUK fellowship. The authors would like to thank Charles D. H. Williams for maintaining the Xgrid facilities at the University of Exeter which were used to reduce the photometric data presented in this study. The authors thank Amelia Bayo for bringing to our attention the important work on the λ Ori region published in Bayo et al. (2011) and Bayo et al. (2012) which we overlooked in our original submission. The inclusion of these works does not change the results or conclusions of the paper. The authors also thank the referee for useful comments and constructive suggestions that have greatly improved this work. This research has made use of data obtained at the Isaac Newton Telescope which is operated on the island of La Palma by the Isaac Newton Group (ING) in the Spanish Observatorio del Roque de los Muchachos of the Institutio de Astrofisica de Canarias. This research has also made use of archival data products from the Two-Micron All-Sky Survey (2MASS), which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center, funded by the National Aeronautics and Space Administration (NASA) and the National Science Foundation

    Three-dimensional arrangement of elastic fibers in the human corneal stroma

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.The cornea is the main refracting lens in the eye. As part of the outer tunic it has to be resilient, a property conferred by the organisation of the constituent collagen. It also has to be sufficiently elastic to regain its exact shape when deformed, in order not to distort the retinal image. The basis of this elasticity is not fully understood. The purpose of this study was to characterise in three dimensions the arrangement and distribution of elastic fibers in the human corneal stroma, using serial block face scanning electron microscopy. We have demonstrated that there exists a complex network of elastic fibers that appear to originate in the sclera or limbus. These appear as elastic sheets in the limbus and peripheral cornea immediately above the trabecular meshwork which itself appears to extend above Descemet's membrane in the peripheral stroma. From these sheets, elastic fibers extend into the cornea; moving centrally they bifurcate and trifurcate into narrower fibers and are concentrated in the posterior stroma immediately above Descemet's membrane. We contend that elastic sheets will play an important role in the biomechanical deformation and recovery of the peripheral cornea. The network may also have practical implications for understanding the structural basis behind a number of corneal surgeries.We would like to thank Dr Anthony Hayes and Mr Derek Scarborough for help with the histology presented in this study and Dr Sally Hayes for useful discussions concerning data interpretation. This work was funded by a Programme Grant (503626) from the Medical Research Council (to KMM) and an MRC studentship (to TW). We thank the CTC Eye Bank at Bristol, UK and the HDBR at Newcastle, UK, for supply of human corneas. The authors have no conflicts of interest to declare

    High Energy Cosmic Rays From Supernovae

    Get PDF
    Cosmic rays are charged relativistic particles that reach the Earth with extremely high energies, providing striking evidence of the existence of effective accelerators in the Universe. Below an energy around ∼1017\sim 10^{17} eV cosmic rays are believed to be produced in the Milky Way while above that energy their origin is probably extragalactic. In the early '30s supernovae were already identified as possible sources for the Galactic component of cosmic rays. After the '70s this idea has gained more and more credibility thanks to the the development of the diffusive shock acceleration theory, which provides a robust theoretical framework for particle energization in astrophysical environments. Afterwards, mostly in recent years, much observational evidence has been gathered in support of this framework, converting a speculative idea in a real paradigm. In this Chapter the basic pillars of this paradigm will be illustrated. This includes the acceleration mechanism, the non linear effects produced by accelerated particles onto the shock dynamics needed to reach the highest energies, the escape process from the sources and the transportation of cosmic rays through the Galaxy. The theoretical picture will be corroborated by discussing several observations which support the idea that supernova remnants are effective cosmic ray factories.Comment: Final draft of a chapter in "Handbook of Supernovae" edited by Athem W. Alsabti and Paul Murdi

    Pre-main-sequence isochrones - III: The Cluster Collaboration isochrone server

    Get PDF
    We present an isochrone server for semi-empirical pre-main-sequence model isochrones in the following systems: Johnson–Cousins, Sloan Digital Sky Survey, Two-Micron All-Sky Survey, Isaac Newton Telescope (INT) Wide-Field Camera and INT Photometric Hα Survey (IPHAS)/UV-Excess Survey (UVEX). The server can be accessed via the Cluster Collaboration webpage http://www.astro.ex.ac.uk/people/timn/isochrones/. To achieve this, we have used the observed colours of member stars in young clusters with well-established age, distance and reddening to create fiducial loci in the colour–magnitude diagram. These empirical sequences have been used to quantify the discrepancy between the models and data arising from uncertainties in both the interior and atmospheric models, resulting in tables of semi-empirical bolometric corrections (BCs) in the various photometric systems. The model isochrones made available through the server are based on existing stellar interior models coupled with our newly derived semi-empirical BCs. As part of this analysis, we also present new cluster parameters for both the Pleiades and Praesepe, yielding ages of 135+20−11 and 665+14−7Myr as well as distances of 132 ± 2 and 184 ± 2 pc, respectively (statistical uncertainty only)

    Pre-main-sequence isochrones - III. The cluster collaboration isochrone server

    Get PDF
    We present an isochrone server for semi-empirical pre-main-sequence model isochrones in the following systems: Johnson-Cousins, Sloan Digital Sky Survey, Two-Micron All-Sky Survey, Isaac Newton Telescope (INT) Wide-Field Camera and INT Photometric Ha Survey (IPHAS)/UV-Excess Survey (UVEX). The server can be accessed via the Cluster Collaboration webpage http://www.astro.ex.ac.uk/people/timn/isochrones/. To achieve this, we have used the observed colours ofmember stars in young clusters with well-established age, distance and reddening to create fiducial loci in the colour-magnitude diagram. These empirical sequences have been used to quantify the discrepancy between the models and data arising from uncertainties in both the interior and atmospheric models, resulting in tables of semi-empirical bolometric corrections (BCs) in the various photometric systems. The model isochrones made available through the server are based on existing stellar interior models coupled with our newly derived semi-empirical BCs. As part of this analysis, we also present new cluster parameters for both the Pleiades and Praesepe, yielding ages of 135+20 -11 and 665+14 -7 Myr as well as distances of 132 ± 2 and 184 ± 2 pc, respectively (statistical uncertainty only).JMR is funded by a UK Science and Technology Facilities Council (STFC) studentship. EEM acknowledges support from the National Science Foundation (NSF) Award AST-1008908. The authors would like to thank Emanuele Tognelli for the updated set of Pisa models and John Stauffer for sharing his catalogue of Kron photometric measurements of Pleiades members. The authors would also like to thank the referee for comments which have vastly improved the clarity of the manuscript. This research has made use of data obtained at the Isaac Newton Telescope, which is operated on the island of La Palma by the Isaac Newton Group (ING) in the Spanish Observatorio del Roque de los Muchachos of the Institutio de Astrofisica de Canarias. This research has made use of archival data products from the Two-Micron All-Sky Survey (2MASS), which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center, funded by the National Aeronautics and Space Administration (NASA) and the National Science Foundation. This research has made use of public data from the SDSS. Funding for the SDSS was provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the US Department of Energy, the National Aeronautics and Space Administration, the Japanese Monbukagakusho, the Max Planck Society and the Higher Education Funding Council for England. The SDSS was managed by the Astrophysical Research Consortium for the Participating Institutions

    Gravitational Collapse and Fragmentation in Molecular Clouds with Adaptive Mesh Refinement

    Get PDF
    We describe a powerful methodology for numerical solution of 3-D self-gravitational hydrodynamics problems with extremely high resolution. Our method utilizes the technique of local adaptive mesh refinement (AMR), employing multiple grids at multiple levels of resolution. These grids are automatically and dynamically added and removed as necessary to maintain adequate resolution. This technology allows for the solution of problems in a manner that is both more efficient and more versatile than other fixed and variable resolution methods. The application of AMR to simulate the collapse and fragmentation of a molecular cloud, a key step in star formation, is discussed. Such simulations involve many orders of magnitude of variation in length scale as fragments form. In this paper we briefly describe the methodology and present an illustrative application for nonisothermal cloud collapse. We describe the numerical Jeans condition, a criterion for stability of self-gravitational hydrodynamics problems. We show the first well-resolved nonisothermal evolutionary sequence beginning with a perturbed dense molecular cloud core that leads to the formation of a binary system consisting of protostellar cores surrounded by distinct protostellar disks. The scale of the disks, of order 100 AU, is consistent with observations of gaseous disks surrounding single T-Tauri stars and debris disks surrounding systems such as β\beta Pictoris.Comment: 10 pages, 6 figures (color postscript). To appear in the proceedings of Numerical Astrophysics 1998, Tokyo, March 10-13, 199
    • …
    corecore